Abstract

Saginaw Bay is a shallow, nutrient-rich embayment in Lake Huron that historically had a complex network of natural rocky reefs. These reef habitats were used as spawning and nursery areas for a variety of fish species, but decades of land-use related sedimentation caused many of these reefs to be degraded. Our study objectives were to analyze abiotic and biotic conditions on degraded and remnant reefs and describe spawning patterns of walleye (Sander vitreus) and lake whitefish (Coregonus clupeaformis) at these sites to determine the potential for increased utilization following reef restoration. During fall and spring 2014–2016, we evaluated water quality and egg predation at four sites with varying levels of reef degradation. Further, we documented reproductive utilization through capture of spawning adults and quantification of egg deposition. Walleye and lake whitefish utilized multiple sites for reproduction; however, densities of spawners and deposited eggs were low, suggesting that they were not utilizing study sites as major spawning locations. Walleye and lake whitefish eggs were eaten by multiple fish species, including larger fish such as channel catfish (Ictalurus punctatus). Dissolved oxygen levels were adequate (i.e., >7 mg 02 L−1) during spring walleye egg incubation; however, bottom dissolved oxygen levels became very low at some sites during winter ice cover, coinciding with lake whitefish egg incubation. As restoration of rocky reefs proceeds in the Bay, evidence of remnant reef spawning fish bodes well for long-term success, though potential limiting factors such as low dissolved oxygen, sedimentation, and egg predation require continued monitoring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call