Abstract

Electrostatic lofting is the detachment of particles from a surface that occurs if the electrostatic force on the particles is greater than the forces binding the particles to the surface. Electrostatic lofting has been hypothesized to occur on the Moon and observed in the laboratory environment. Because gravity is much weaker on asteroids than on the Moon, the hypothesis of electrostatic lofting has naturally been extended to these smaller airless bodies. We evaluate the feasibility of electrostatic lofting on Bennu using two formulations of the patched charge model. We find that submillimeter particles can be lofted from Bennu’s dayside and, depending on their initial conditions, will reimpact or escape. The size and speed of the predicted electrostatically lofted particles are compared to those of the particle ejection events recently observed on Bennu. We find that dayside electrostatic lofting is not consistent with the size and speed of particles in the largest ejection events observed by the OSIRIS-REx mission. However, the escape of submillimeter particles has implications for the particle size distribution on Bennu’s surface. Additionally, we model particle charging on Bennu’s nightside due to secondary electron emission and find the resulting electrostatic force to be too weak to produce electrostatic lofting on the nightside.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call