Abstract

The Delft Self-Grasping Hand is an adjustable passive prosthesis operated using the concept of tenodesis (where opening and closing of the hand is mechanically linked to the flexion and extension of the wrist). As a purely mechanical device that does not require harnessing, the Self-Grasping Hand offers a promising alternative to current prostheses. However, the contralateral hand is almost always required to operate the mechanism to release a grasp and is sometimes also used to help form the grasp; hence limiting the time it is available for other purposes. In this study we quantified the amount of time the contralateral hand was occupied with operating the Self-Grasping Hand, classified as either direct or indirect interaction, and investigated how these periods changed with practice. We studied 10 anatomically intact participants learning to use the Self-Grasping Hand fitted to a prosthesis simulator. The learning process involved 10 repeats of a feasible subset of the tasks in the Southampton Hand Assessment Procedure (SHAP). Video footage was analysed, and the time that the contralateral hand was engaged in grasping or releasing was calculated. Functionality scores increased for all participants, plateauing at an Index of Functionality of 33.5 after 5 SHAP attempts. Contralateral hand involvement reduced significantly from 6.47 (first 3 attempts) to 4.68 seconds (last three attempts), but as a proportion of total task time remained relatively steady (increasing from 29% to 32%). For 9/10 participants most of this time was supporting the initiation of grasps rather than releases. The reliance on direct or indirect interactions between the contralateral hand and the prosthesis varied between participants but appeared to remain relatively unchanged with practice. Future studies should consider evaluating the impact of reliance on the contralateral limb in day-to-day life and development of suitable training methods.

Highlights

  • Upper-limb prosthetic hands can be categorised as active or passive

  • We highlight participants/tasks/attempts which were excluded from the video analysis and provide all the Southampton Hand Assessment Procedure (SHAP) IOF scores

  • The mean Index of Functionality (IoF) scores presented in this study are slightly lower than those presented in studies using body-powered and myoelectric prostheses and prosthesis simulators (~30–70)

Read more

Summary

Introduction

Upper-limb prosthetic hands can be categorised as active or passive. With active prostheses the user has continuous control over the hand posture, opening and closing the hand either through movements of the body (e.g. via a shoulder-worn harness), or via electric motors controlled from electromyographic signals. Passive hands offer limited or no grasping function, but have traditionally been favoured for their cosmetically appealing appearance, their light weight, and their low complexity. About one third of users of hand prostheses, use passive devices [1]. Passive prostheses can be categorised into either static or adjustable designs. Adjustable passive hands typically need support from the contralateral limb to perform a grasp [1]

Objectives
Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call