Abstract

The purpose of this investigation was to study bone growth into porous polyethylene rods as a function of time and pore structure. Previous studies have indicated the biocompatibility of solid polyethylene materials which are currently being used clinically. Porous polyethylene rods were implanted in the femurs of mongrel dogs which are sacrificed four, eight, and 16 weeks postoperatively. The implants were then sectioned and examined histologically and microadiographically. Quantitative techniques were employed to determine the amount of bone ingrowth as a function of time and pore size. The pore structures of the materials were evaluated using optical microscopy and mercury intrusion porosimetry. The results of this investigation have demonstrated that porous polyethylene is capable of accepting bone growth into pores as small as 40 mum. The optimum rate of bone ingrowth was observed in pore sizes of approximately 100 to 135 mum, with no increase in the rate of bone ingrowth observed in samples possessing larger pore sizes. No adverse tissue response was found at implant times up to 16 weeks in pore sizes of 100 mum or larger.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.