Abstract
The U.S. Environmental Protection Agency (EPA) has conducted extensive reviews and analyses of health effects associated with exposures to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. Because the carcinogenicity of TCDD has received considerable attention from EPA and others, this paper focuses on animal data for non-cancer health effects that sometimes appear to be almost as sensitive as cancer to TCDD exposures. Benchmark dose (BMD) methodology can be used to identify point-of-departure (POD) estimates for use in derivation of reference doses or evaluation of margins of exposure. However, selection of an appropriate BMD methodology for assessment of non-cancer data, which are usually continuous (non-quantal), needs to be considered. One option available for a benchmark dose is to use a small percentage change in the mean response relative to the estimated maximum effect of TCDD at large doses. The benchmark based on a change estimated to equal 1% of the estimated maximum change from background to the asymptotic response at large doses (denoted as the relative ED01) was used by EPA in a reassessment of TCDD health risks. A lower confidence limit (LED01) could serve as a point of departure for setting a reference dose (RfD). This is a somewhat arbitrary effect level, generally within the background range of variation among unexposed animals, with an unknown risk. An alternative approach is recommended in which the risk of abnormal levels can be estimated. For continuous-data effects, a low and/or high percentile (e.g., 1st and/or 99th) in unexposed control animals can be used to define abnormal (not necessarily adverse) levels. From a dose–response curve and the standard deviation, it is possible to estimate the excess risk (proportion) of animals with abnormal levels as a function of dose for normally distributed levels. With this approach, the risk-based benchmark dose (BMD01) represents the dose with an estimated excess risk of 1% of the animals in the abnormal range rather than an arbitrary change in the value of the measured endpoint. Values for the relative and risk-based benchmark doses are computed from published data for a variety of non-cancer health effects associated with exposure to TCDD. For the 30 cases investigated, the BMD01 tended to vary around the lowest experimental dose tested, whereas the relative ED01 tended to be about a factor of three below the lowest dose, and the BMD01 was more precisely estimated than the ED01 as reflected by narrower confidence intervals. The BMDL01 values were on average more than fivefold higher than the corresponding LED01 values. However, these values still provide a conservative assessment for POD assessment, because the BMDL01 tends to be about an order of magnitude lower (more conservative) than the no-observed-adverse-effect level. This analysis demonstrates the potential impact of alternative choices in benchmark dose methodology. In combination with selection of appropriate adverse health effect endpoint(s) and studies, use of the risk-based BMD results in identification of more valid and meaningful POD estimates for non-cancer effects compared to the use of the relative ED approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.