Abstract

The iterative and convergent nature of ensemble learning algorithms provides potential for improving classification of complex landscapes. This study performs land-cover classification in a heterogeneous Massachusetts landscape by comparing three ensemble learning techniques (bagging, boosting, and random forests) and a non-ensemble learning algorithm (classification trees) using multiple criteria related to algorithm and training data characteristics. The ensemble learning algorithms had comparably high accuracy (Kappa range: 0.76-0.78), which was 11% higher than that of classification trees. Ensemble learning techniques were not influenced by calibration data variability, were robust to one-fifth calibration data noise, and insensitive to a 50% reduction in calibration data size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.