Abstract

BackgroundCharacterization of stereotyped orbitofrontal cortex (OFC) sulcogyral patterns formed by the medial and lateral orbitofrontal sulci (MOS and LOS) can be used to characterize individual variability; however, in practice, issues exist for reliability and reproducibility of anatomical classifications, as current methods rely on manual tracing. New MethodWe assessed whether an automated tracing procedure would be useful for characterizing OFC sulcogyral patterns. 100 subjects from a published collection of manual OFC tracings and characterizations of patients with bipolar disorder, schizophrenia, and typical controls were used to evaluate an automated tracing procedure implemented using the BrainVISA Morphologist Pipeline. ResultsAutomated tracings of caudal and rostral segments of the medial (MOSc/MOSr) and lateral (LOSc/LOSr) orbitofrontal sulci, as well as the intermediate (IOS) and transverse orbitofrontal sulci (TOS) were found to accurately identify OFC sulci, accurately portray sulci continuity, and reliably inform manual sulcogyral pattern characterization. Comparison with Existing MethodAutomated tracings produced visibly similar tracings of OFC sulci and removed subjective influence from locating sulci. The semi-automated pipeline of automated tracing and manual sulcogyral pattern characterization can eliminate the need for direct input during the most time-consuming process of the manual pipeline. ConclusionsThe results suggest that automated OFC sulci tracing methods using BrainVISA Morphologist are feasible and useful in a semi-automated pipeline to characterize OFC sulcogyral patterns. Automated OFC sulci tracing methods will improve reliability and reproducibility of sulcogyral characterizations and can allow for characterizations of sulcal patterns types in larger sample sizes, previously unattainable using traditional manual tracing procedures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.