Abstract

The crack resistance of asphalt pavement mixtures directly impact pavement service condition and pavement distress. And characterizing the crack resistance of a pavement mixture can reflect the crack resistance potential of asphalt pavement. This study analyzes several representative highway sections based on time, material, and service conditions to identify the mixture type of three layers. Semi-circular bending tests are conducted at 15 °C, and load–displacement curves are recorded. Factor independence analysis is performed, and combinations showcasing the cracking performance of the surface layer, middle layer, and bottom layer are selected. Analysis of variance (ANOVA) evaluating the indices versus selected factors for the three layers identifies significant influencing factors, and the crack resistance is analyzed based on these significant factors. The crack resistance of the middle layer with the highest truck loads is significantly lower than the two other lanes and the shoulder. Transverse crack spacing (TCS) can be used to directly evaluate the crack resistance of the mixture. The Factor dots upper rate (FUDR) and absolute Factor dots upper rate (absFUDR) indices are introduced to quantify the percentage deviation of a factor specimen from the average crack resistance index–fracture energy ratio, indicating whether the crack curve becomes sharper or flatter. The factor dots upper rate index is then applied to characterize the factors, and the results are reasonable. It is found only on the surface and middle layers that the service age has significant impacts on crack resistance, the Transverse crack spacing has significant impacts on crack resistance index, and the Factor dots upper rate can identify the brittleness of mixtures with different factors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call