Abstract

This research evaluates the utility of several remote sensing data types for the purpose of mapping forest structure and related attributes at a regional scale. Several sensors were evaluated, including (i) single date Landsat Thematic Mapper (TM); (ii) multitemporal Landsat TM; (iii) Airborne Data Acquisition and Registration (ADAR), a sensor with high spatial resolution; (iv) Airborne Visible-Infrared Imaging Spectrometer (AVIRIS), a sensor with high spectral resolution; and (v) Scanning Lidar Imager Of Canopies By Echo Recovery (SLICER), a lidar sensor that directly measures the height and canopy structure of forest vegetation. To evaluate the ability of each of the sensors to predict stand structure attributes, we assembled a data set consisting of 92 field plots within the Willamette National Forest in the vicinity of the H.J. Andrews Experimental Forest. Stand structure attributes included age, basal area, aboveground biomass, mean diameter at breast height (DBH) of dominant and codominant stems, mean and standard deviation of the DBH of all stems, maximum height, and the density of stems with DBH greater than 100 cm. SLICER performed better than any other remote sensing system in its predictions of forest structural attributes. The performance of the imaging sensors (TM, multitemporal TM, ADAR, and AVIRIS) varied with respect to which forest structural variables were being examined. For one group of variables there was little difference in the ability of the these sensors to predict forest structural attributes. For the remaining variables, we found that multitemporal TM was as or more effective than either ADAR or AVIRIS. These results indicate that multitemporal TM should be investigated as an alternative to either hyperspectral or hyperspatial sensors, which are more expensive and more difficult to process than multitemporal Landsat TM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call