Abstract

An evaluation of the ex-vessel core catcher system of a sample advanced light water reactor was presented. The core catcher was designed to cool down the molten corium through a combined injection of water and gas from the bottom of the molten corium, which could be effective in the reduction of rapid steam generation and in the suppression of a steam explosion. By using the MELCOR code, a scenario analysis was performed for a representative severe accident scenario of the ALWR, that is, the 6-inches large break loss of coolant accident without safe injection. The corium spreading regime was estimated by an asymptotic calculation. The composition of the molten corium, the decay power level, and the sacrificial concrete ablation depth with time were obtained by a sacrificial concrete ablation analysis. The corium cooling history in the core catcher during the coolant injection was evaluated to calculate the temporal steam generation rate by considering an energy conservation equation. These were used as the major inputs for the temporal calculations of containment pressure which was performed by using the GASFLOW code. Several cases with change of water and gas injection rates were calculated. It was confirmed that the bottom water injection system was an effective corium cooling method in the ex-vessel core catcher to preclude a possible steam explosion and to suppress the quick release of steam.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.