Abstract

All sorts of positioning systems exist and there is a growing demand nowadays in order to provide users with additional data in many activities. Horse racing is no exception and the PMU (Paris Mutuel Urbain) is in charge of driving the project concerning the deployment of a tracking system. PMU is Europe’s largest betting operator. It is an Economic Interest Grouping (EIG), whose mission is to finance the French horse racing industry. The specifications of the tracking system to be implemented are quite tough: an accuracy of positioning of 25 cm for more than 98% of the time during races for all the horses. A call for proposals has been issued and a few competitors have been hired in order to demonstrate the real performances of their system in a so-called “pilot” phase. The problem we now have is how to evaluate the real accuracy of the system in real conditions, i.e., during “simulated races.” Additional aspects are also of uppermost importance, such as the latency and the way data are displayed, but the present paper will only focus on the evaluation methodology used for the positioning accuracy assessment. An incremental validation approach was set up in order to allow the competitors to gradually improve their solutions, from the “easiest” tests (with cars) to the “most difficult” ones on horses during simulated races. Note that all competitors proposed a GNSS (Global Navigation Satellite System)-based solution using an RTK (Real-Time Kinematic) approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.