Abstract

In design of electronic packages, finite-element method (FEM) analysis for evaluating the strength and reliability of solder joints should be conducted with consideration of the presence of Cu/Sn intermetallic compounds (IMCs) generated at the interface between solder and copper wiring. To conduct such analysis accurately, the deformation characteristics of Cu/Sn IMCs must be clarified by conducting tensile tests. This paper describes a method to evaluate tensile characteristics of Cu/Sn IMCs. The method employs a composite specimen with first outer layer of Cu, second layer of Cu/Sn IMCs, and core of Sn-3.0Ag-0.5Cu lead-free solder. The specimen is made by a method in which a copper-plated solder specimen is heat treated at 453 K to generate Cu/Sn IMCs between the solder and copper. Tensile tests were conducted using the composite specimen. After the tests, the fracture appearance and characteristics of the stress–strain relations of the specimens were investigated. Based on the results, a numerical method based on the rule of mixtures (ROM) is proposed to estimate the stress–strain relation of Cu/Sn IMCs under tensile loading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call