Abstract

Traditional Kansei Engineering (KE) often relies heavily on the designers’ prior knowledge to study user emotional requirements. However, cognitive differences between designers and users can result in Ming-style furniture failing to gain consumer acceptance when introduced to the market. To enhance the objectivity and accuracy of the design process, this study proposes an improved evaluation and design method that integrates Game Theory (GT) with Particle Swarm Optimization-Support Vector Regression (PSO-SVR) based on KE. This approach aims to identify truly critical emotional requirements and accurately translate them into design characteristics. First, emotional requirements are collected, and the product form is analyzed and deconstructed. Next, the Spherical Fuzzy Analytic Hierarchy Process (SFAHP) and Criteria Importance Through Intercriteria Correlation (CRITIC) are employed to calculate the subjective and objective weights of emotional requirements, respectively. Then, GT is used to find the optimal equilibrium weights to select the critical emotional requirements. Finally, an intelligent evaluation system is built using a combination of PSO and SVR to determine the relationship between critical user emotional requirements and product design characteristics, thereby identifying the optimal design parameters for Ming-style furniture. The results reveal that the most critical user emotional requirements are “concise”, “ornate”, and “dynamic”. In addition, the user evaluation results of the optimal design closely match the system’s predicted outcomes, validating the feasibility and advancement of the proposed method. Compared to most KE studies that focus solely on expert knowledge, this study better balances the subjective experience of designers with objective information of users, improving the accuracy of product design decisions and helping designers develop innovative products that align closely with user requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.