Abstract

We analyse the strong approximation of the Cox–Ingersoll–Ross (CIR) process in the regime where the process does not hit zero by a positivity preserving drift-implicit Euler-type method. As an error criterion, we use the p th mean of the maximum distance between the CIR process and its approximation on a finite time interval. We show that under mild assumptions on the parameters of the CIR process, the proposed method attains, up to a logarithmic term, the convergence of order 1/2. This agrees with the standard rate of the strong convergence for global approximations of stochastic differential equations with Lipschitz coefficients, despite the fact that the CIR process has a non-Lipschitz diffusion coefficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.