Abstract

Nuclear reactor modeling has been shifting, over the last decades, towards full-core multiphysics analysis due to the ever-increasing safety requirements and complexity of the designs of innovative systems. This is particularly true for liquid-fuel reactor concepts such as the Molten Salt Fast Reactor (MSFR), given their strong intrinsic coupling between thermal-hydraulics, neutronics and fuel chemistry. In the MSFR, fission products (FPs) are originated within the liquid fuel and are carried by the fuel flow all over the reactor core and through pumping and heat exchange systems. Some of FP species, in the form of solid precipitates, can represent a major design and safety challenge, e.g., due to deposition on solid boundaries, and their distribution in the core is relevant to the design and safety analysis of the reactor. In this regard it is essential, both for the design and the safety assessment of the reactor, the capability to model the transport of solid FPs and their deposition to the boundary (e.g., wall or heat exchanger structures). To this aim, in this study, models of transport of solid FPs in the MSFR are developed and verified. An Eulerian single-phase transport model is developed and integrated in a consolidated multiphysics model of the MSFR based on the open-source CFD library OpenFOAM. In particular, general mixed-type deposition boundary conditions are considered, to possibly describe different kinds of particle-wall interaction mechanisms. For verification purposes, analytical solutions for simple case studies are derived ad hoc based on the extension of the classic Graetz problem to linear decay, distributed source terms and mixed-type boundary conditions. The results show excellent agreement between the two models, and highlight the effects of decay and deposition phenomena of various intensity. The resulting approach constitutes a computationally efficient tool to extend the capabilities of CFD-based multiphysics MSFR calculations towards the simulation of solid fission products transport.

Highlights

  • Liquid-fuel reactor concepts have gained renewed interest over the last years

  • The aim of this work is the development of models of transport of solid fission products (FPs) and their integration in state-of-the-art multiphysics tools adopted for Molten Salt Fast Reactor (MSFR) analysis

  • Simplified transport models based on a Eulerian single-phase framework were implemented in consolidated MSFR multiphysics simulation tools based on the open-source finite-volume library OpenFOAM

Read more

Summary

Introduction

Liquid-fuel reactor concepts have gained renewed interest over the last years. The Molten Salt Reactor (MSR) and, in particular, the fast-spectrum MSFR (Molten Salt Fast Reactor) has obtained a prominent role thanks to the selection as one of the Generation IV reference technologies (Serp et al, 2014). The adoption of a circulating liquid fuel, in conjunction with the fast neutron spectrum, makes the MSFR system unique from the design and modeling viewpoints. Reactor modeling efforts have shifted towards full-core and multiphysics analysis to meet the requirements and complexity of physical and computational models for the MSFR. A comprehensive account of state-of-the-art multiphysics modeling tools for the MSFR can be found in the work of Tiberga et al (2020)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.