Abstract

An Eulerian rate-independent constitutive model for isotropic materials undergoing finite elastoplastic deformation is formulated. Entirely fulfilling the multiplicative decomposition of the deformation gradient , a constitutive equation and the coupled elastoplastic spin of the objective corotational rate therein are explicitly derived. For the purely elastic deformation , the model degenerates into a hypoelastic-type equation with the Green–Naghdi rate. For the small elastic- and rigid-plastic deformations, the model converges to the widely-used additive model where the Jaumann rate is used. Finally, as an illustration, using a combined exponential isotropic-nonlinear kinematic hardening pattern, the finite simple shear deformation is analyzed and a comparison is made with the experimental findings in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.