Abstract

A constitutive model for isotropic, semi-crystalline polymers is proposed. The model is Eulerian in the sense that it is independent of measures of total deformation and plastic/inelastic deformations. It is able to account for such essential phenomena as strain-rate dependence, work hardening, stress relaxation, volumetric inelastic deformations, and damage. The model was applied to uniaxial tension tests performed on polyoxymethylene (POM), which is a semi-crystalline polymer widely used in the industry. Three types of tests were conducted: monotonic tests at different strain rates, stress relaxation tests, and loading-unloading tests. The model was able to reproduce the experimental results well. The proposed model was also implemented as a VUMAT in Abaqus, and the deformation of a 3D geometry was simulated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call