Abstract

Mutagenesis is a powerful tool used for studying gene function as well as for crop improvement. It is regaining popularity because of the development of effective and cost efficient methods for high-throughput mutation detection. Selection for semi-dwarf phenotype during green revolution has reduced genetic diversity including that for agronomically desirable traits. Most of the available mutant populations in wheat (Triticum aestivum L.) were developed in post-green revolution cultivars. Besides the identification and isolation of agronomically important alleles in the mutant population of pre-green revolution cultivar, this population can be a vital resource for expanding the genetic diversity for wheat breeding. Here we report an Ethylmethane Sulfonate (EMS) generated mutant population consisting of 4,180 unique mutant plants in a pre-green revolution spring wheat cultivar ‘Indian’. Released in early 1900s, ‘Indian’ is devoid of any known height-reducing mutations. Unique mutations were captured by proceeding with single M2 seed from each of the 4,180 M1 plants. Mutants for various phenotypic traits were identified by detailed phenotyping for altered morphological and agronomic traits on M2 plants in the greenhouse and M3 plants in the field. Of the 86 identified mutants, 75 (87%) were phenotypically stable at the M4 generation. Among the observed phenotypes, variation in plant height was the most frequent followed by the leaf morphology. Several mutant phenotypes including looped peduncle, crooked plant morphology, ‘gritty’ coleoptiles, looped lower internodes, and burnt leaf tips are not reported in other plant species. Considering the extent and diversity of the observed mutant phenotypes, this population appears to be a useful resource for the forward and reverse genetic studies. This resource is available to the scientific community.

Highlights

  • Functional genomic resources are important to determine function of the genes that control agronomic traits

  • The forward genetic approach enables identification of agronomically desirable phenotypes that can be exploited in breeding programs

  • 200 seeds were soaked in 40 ml of de-ionized water (3,000 ml for 600 gm of seed) in a flask that was kept on a benchtop shaker (Barnstead Labline—MaxQ 3,000), for four hours with gentle shaking at room temperature, with hourly change of water

Read more

Summary

Introduction

Functional genomic resources are important to determine function of the genes that control agronomic traits. Gene alteration through mutagenesis is an important approach to generate such functional resources. Ethylmethane Sulfonate (EMS) has been the mutagen of choice in forward genetics approach to generate mutagenized populations in a wide array of PLOS ONE | DOI:10.1371/journal.pone.0145227. EMS induces mutations creating allelic versions of genes resulting in phenotypes of varying intensity [1]. The forward genetic approach enables identification of agronomically desirable phenotypes that can be exploited in breeding programs. The forward genetics approach has been successfully used to identify mutants of agronomic importance including imidazolinone tolerance [2], waxiness, and grain hardness [3] (http://wheat.pw.usda.gov/GG2/Triticum/wgc/2008/)

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.