Abstract

An ethylene response-related factor, GbERF1-like, from Gossypium barbadense cv. '7124' involved in the defence response to Verticillium dahliae was characterized. GbERF1-like transcripts present ubiquitously in various tissues, with higher accumulation in flower organs. GbERF1-like was also responsive to defence-related phytohormones and V. dahliae infection. The downregulation of GbERF1-like increased the susceptibility of cotton plants to V. dahliae infection, while overexpression of this gene improved disease resistance in both cotton and Arabidopsis, coupled with activation of the pathogenesis-related proteins. Further analysis revealed that genes involved in lignin synthesis, such as PAL, C4H, C3H, HCT, CCoAOMT, CCR and F5H, showed higher expression levels in the overexpressing cotton and Arabidopsis lines and lower expression levels in the RNAi cotton lines. The expression levels of these genes increased obviously when the GbERF1-like-overexpressing plants were inoculated with V. dahliae. Meanwhile, significant differences in the content of whole lignin could be found in the stems of transgenic and wild-type plants after inoculation with V. dahliae, as revealed by metabolic and histochemical analysis. More lignin could be detected in GbERF1-like-overexpressing cotton and Arabidopsis but less in GbERF1-like-silencing cotton compared with wild-type plants. The ratio of S and G monomers in GbERF1-like-overexpressing cotton and Arabidopsis increased significantly after infection by V. dahliae. Moreover, our results showed that the promoters of GhHCT1 and AtPAL3 could be transactivated by GbERF1-like in vivo based on yeast one-hybrid assays and dual-luciferase reporter assays. Knockdown of GhHCT1 in GbERF1-like over-expressing cotton decreases resistance to V. dahliae. Collectively, our results suggest that GbERF1-like acts as a positive regulator in lignin synthesis and contributes substantially to resistance to V. dahliae in plants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.