Abstract

Procedural abscission of outer reproductive organs during flower and fruit development occurs in most plant lineages. Undesired abscission, such as fruitlet shedding causes considerable yield loss in many fruit-producing species. Ethylene is one of the key factors regulating organ abscission. However, the participants involved in the ethylene-mediated abscission pathway remains largely unidentified. In this study, we focused on the ethylene response transcription factors (ERFs) regulating fruitlet abscission in an industrial tree species, A. catechu. A total of 165 ERF genes have been found in the A. catechu genome and eight of these showed distinct expression between the “about-to-abscise” and “non-abscised” samples. An AcERF116 gene with high expression level in the fruit abscission zone (FAZ) was selected for further study. Overexpression of the AcERF116 gene accelerated cell separation in the abscission zone (AZ) and promoted pedicel abscission in transgenic tomato lines. The PG (ploygalacturonase) activity was enhanced in the FAZs of A. catechu fruitlets during ethylene-induced fruitlet abscission, while the PME (pectin methylesterase) activity was suppressed. In addition, cytosolic alkalization was observed in the AZs during abscission in both tomato and A. catechu. Our results suggest that AcERF116 plays a critical role in the crosstalk of ethylene and fruitlet abscission in A. catechu.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call