Abstract
Aqueous batteries are promising devices for electrochemical energy storage because of their high ionic conductivity, safety, low cost, and environmental friendliness. However, their voltage output and energy density are limited by the failure to form a solid-electrolyte interphase (SEI) that can expand the inherently narrow electrochemical window of water (1.23 V) imposed by hydrogen and oxygen evolution. Here, a novel (Li4 (TEGDME)(H2 O)7 ) is proposed as a solvation electrolyte with stable interfacial chemistry. By introducing tetraethylene glycol dimethyl ether (TEGDME) into a concentrated aqueous electrolyte, a new carbonaceous component for both cathode-electrolyte interface and SEI formation is generated. In situ characterizations and ab initio molecular dynamics (AIMD) calculations reveal a bilayer hybrid interface composed of inorganic LiF and organic carbonaceous species reduced from Li+ 2 (TFSI- ) and Li+ 4 (TEGDME). Consequently, the interfacial films kinetically broaden the electrochemical stability window to 4.2 V, thus realizing a 2.5 V LiMn2 O4 -Li4 Ti5 O12 full battery with an excellent energy density of 120 W h kg-1 for 500 cycles. The results provide an in-depth, mechanistic understanding of a potential design of more effective interphases for next-generation aqueous lithium-ion batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.