Abstract
Air logistics transportation has become one of the most promising markets for the civil drone industry. However, the large flow, high density, and complex environmental characteristics of urban scenes make tactical conflict resolution very challenging. Existing conflict resolution methods are limited by insufficient collision avoidance success rates when considering non-cooperative targets and fail to take the temporal constraints of the pre-defined 4D trajectory into consideration. In this paper, a novel reinforcement learning-based tactical conflict resolution method for air logistics transportation is designed by reconstructing the state space following the risk sectors concept and through the use of a novel Estimated Time of Arrival (ETA)-based temporal reward setting. Our contributions allow a drone to integrate the temporal constraints of the 4D trajectory pre-defined in the strategic phase. As a consequence, the drone can successfully avoid non-cooperative targets while greatly reducing the occurrence of secondary conflicts, as demonstrated by the numerical simulation results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.