Abstract

This paper proposes an energy-based η approach to estimate the elastic–plastic energy release rate for shallow surface cracks located at the weld toe at the chord crown point near the tension brace in the circular hollow section (CHS) K-joint. This approach evaluates the elastic–plastic energy release rate using the area under the load versus the load-line displacement curve for large-scale tubular K-joints, similar to the conventional η approach used to calculate the energy release rate for facture specimens described in material testing standards. The present work demonstrates that the value of ηpl equals 1 for the shallow cracks considered in tubular K-joints. The effective width (Beff), via which the remaining ligament area (Alig) is calculated, depends on the geometry of the K-joints. The plastic η approach with the proposed effective width Beff, coupled with a previous development on the nonlinear load–deformation formulation for K-joints, predicts closely the elastic–plastic energy release rate along the crack front for cracked tubular K-joints, compared to the conventional domain-integral method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.