Abstract

In practice, sometimes the data can be divided into several blocks but only a few of the largest observations within each block are available to estimate the heavy tail index. To address this problem, we propose a new class of estimators through the Generalized Jackknife methodology based on Qi’s estimator (2010). These estimators are proved to be asymptotically normal under suitable conditions. Compared to Hill’s estimator and Qi’s estimator, our new estimator has better asymptotic efficiency in terms of the minimum mean squared error, for a wide range of the second order shape parameters. For the finite samples, our new estimator still compares favorably to Hill’s estimator and Qi’s estimator, providing stable sample paths as a function of the number of dividing the sample into blocks, smaller estimation bias, and MSE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.