Abstract

In this paper, a new estimator for a conditional quantile is proposed by using the empirical likelihood method and local linear fitting when some auxiliary information is available. The asymptotic normality of the estimator at both boundary and interior points is established. It is shown that the asymptotic variance of the proposed estimator is smaller than those of the usual kernel estimators at interior points, and that the proposed estimator has the desired sampling properties at both boundary and interior points. Therefore, no boundary modifications are required in our estimation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.