Abstract

Urban form is an important factor affecting urban energy. However, the design of urban form and energy mostly belong to two separate disciplines and fields, and urban energy planning research rarely considers their mutual relationship. The available space intensity (ASI) of solar energy is formed on the basis of energy planning and urban design; the objective of this research is to evaluate the impact of urban form on the ASI of solar energy and to propose strategies for planning of the space that is available for solar energy so as to improve the efficiency of urban energy utilization and achieve sustainable urban development. Methodologically, this study firstly proposes a model to quantify the ASI of solar energy using three indicators: solar radiation intensity (SRI), solar installation intensity (SII), and solar generation intensity (SEGI). Then, we quantitatively calculate the solar ASI of nine types of typical urban blocks in a sub-center of Wuhan City, Nanhu. Correlation analysis and multiple linear regression analysis are then used to analyze the correlation between the form indicators and solar ASI, as well as the degree of influence. The results show that the differences in SRI, SII, and SEGI amongst the nine types of city blocks were as high as 114.61%, 162.50%, and 61.01%. The solar ASI was mainly affected by three form indicators: the building coverage ratio, the average building height, and the volume-to-area ratio. Reducing the building coverage ratio and increasing vertical development at the same time can effectively improve the ASI of solar energy. The results of this study and the established method provide an important reference and rapid calculation tool for urban energy planning and design, reducing the data and time usually required for solar analysis at the block scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call