Abstract

A mathematical model for the two‐layer composite Si‐Ge energy dispersive X‐ray detector is proposed, based on analyses of radiation and electron transport in the detector, and a mathematical model of an energy dispersive X‐ray fluorescent spectrometer with the detector is considered. The Monte Carlo method is applied to calculate probabilities of photon detection in different parts of the detector's response function. The composite detector with the time anti‐coincidence scheme is proposed; its first layer is Si detector, and the second layer is Ge detector. It is shown that this composite detector has some advantages, such as reduced Ge photo escape peaks intensities and efficiency of detection of high energy photons similar to efficiency of Ge detector. Applying the X‐ray detector for the energy dispersive X‐ray fluorescent spectrometer provides for a lower background level. Copyright © 2012 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.