Abstract

Computationally intensive computer models are used in many areas of engineering. In order to speed up the investigations, fast statistical surrogates have been developed in the literature. The surrogates addressed in this paper incorporate a general and unstructured covariance, best suited for modeling nonlinear and nonstationary multiple outputs. We propose an efficient algorithm to cope with the estimation of a large number of parameters. Then multivariate kriging is used to construct the fast surrogate. This algorithm can be embedded in both maximum likelihood and cross-validation estimation methods. We compare the proposed method with a current method based on principal components. The methodology is illustrated with a mechanical engineering application involving a vehicle suspension system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.