Abstract

Spiders have been suspected to be one of the most important groups of natural enemies of insects worldwide. To document the impact of the global spider community as insect predators, we present estimates of the biomass of annually killed insect prey. Our estimates assessed with two different methods suggest that the annual prey kill of the global spider community is in the range of 400–800 million metric tons (fresh weight), with insects and collembolans composing >90% of the captured prey. This equals approximately 1‰ of the global terrestrial net primary production. Spiders associated with forests and grasslands account for >95% of the annual prey kill of the global spider community, whereas spiders in other habitats are rather insignificant contributors over a full year. The spider communities associated with annual crops contribute less than 2% to the global annual prey kill. This, however, can be partly explained by the fact that annual crop fields are “disturbed habitats” with a low buildup of spider biomass and that agrobiont spiders often only kill prey over short time periods in a year. Our estimates are supported by the published results of exclusion experiments, showing that the number of herbivorous/detritivorous insects and collembolans increased significantly after spider removal from experimental plots. The presented estimates of the global annual prey kill and the relative contribution of spider predation in different biomes improve the general understanding of spider ecology and provide a first assessment of the global impact of this very important predator group.

Highlights

  • Spiders, which evolved from an arachnid ancestor during the Devonian period around 400 million years ago, are among the most common and abundant predators in terrestrial ecosystems (Turnbull 1973; Coddington and Levi 1991; Selden et al 1991)

  • Our extrapolations resulted in an estimated annual prey kill by the global spider community in the range of 400–800 million

  • Apart from insects and collembolans, spiders are another important component in spider diets (“intraguild predation” sensu Polis et al 1989)

Read more

Summary

Introduction

Spiders, which evolved from an arachnid ancestor during the Devonian period around 400 million years ago, are among the most common and abundant predators in terrestrial ecosystems (Turnbull 1973; Coddington and Levi 1991; Selden et al 1991). Turnbull (1973) calculated an overall mean density of 131 spiders m−2 based on assessments from many different areas of the globe, and Nyffeler (2000) found an overall mean density of 152 spiders m−2 for a large variety of grassland habitats. Spiders can reach peak densities of up to 1000 individuals m−2 (Ellenberg et al 1986). Barth (1997) partially attributes the evolutionary success of spiders to the fact that they are equipped with highly developed sensory systems providing individuals with detailed information about potential predators and prey in their surroundings.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call