Abstract

AbstractMaximizing the reduction of nitrate to dinitrogen gas (denitrification) has been advocated as a means to decrease nitrate pollution that causes eutrophication and hypoxia in estuaries worldwide. Managing this flux in bottomland forest wetlands of the Mississippi River could potentially reduce the world's second largest hypoxic zone. We used published denitrification rates, geospatial data on habitat area and inundation frequency, water level records (1963–2011), and average monthly temperatures to estimate annual denitrification in the Atchafalaya River Basin, the principal distributary of the Mississippi River. Denitrification rates ranged from 5394 kg N year−1 (3.07 kg N km−2 year−1) in 1988 to 17 420 kg N year−1 (9.92 kg N km−2 year−1) in 1981, and rates were consistently higher in fall compared with those in spring. Total NO3− denitrified in the basin was negligible compared with total NO3− entering the Gulf of Mexico. If all N denitrified in the basin instead entered the Gulf, the hypoxic zone was predicted to increase only 5.07 km2 (0.06%). This negligible effect of the basin on N dynamics in the Gulf agrees with other mass balance and isotopic studies in the region. Copyright © 2014 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.