Abstract

A yeast gene encoding a DNA-binding protein that recognizes the telomeric repeat sequence TTAGGG found in multicellular eukaryotes was identified by screening a lambda gt11 expression library with a radiolabeled TTAGGG multimer. This gene, which we refer to as TBF1 (TTAGGG repeat-binding factor 1), encodes a polypeptide with a predicted molecular mass of 63 kDa. The TBF1 protein, produced in vitro by transcription and translation of the cloned gene, binds to (TTAGGG)n probes and to a yeast telomeric junction sequence that contains two copies of the sequence TTAGGG separated by 5 bp. TBF1 appears to be identical to a previously described yeast TTAGGG-repeat binding activity called TBF alpha. TBF1 produced in vitro yields protein-DNA complexes with (TTAGGG)n probes that have mobilities on native polyacrylamide gels identical to those produced by partially purified TBF alpha from yeast cells. Furthermore, when extracts are prepared from a strain containing a TBF1 gene with an antigen tag, we find that the antigen copurifies with the predominant (TTAGGG)n-binding activity in the extracts. The DNA sequence of TBF1 was determined. The predicted protein sequence suggests that TBF1 may contain a nucleotide-binding domain, but no significant similarities to any other known proteins were identified, nor was an obvious DNA-binding motif apparent. Diploid cells heterozygous for a tbf1::URA3 insertion mutation are viable but upon sporulation give rise to tetrads with only two viable spores, both of which are Ura-, indicating that the TBF1 gene is essential for growth. Possible functions of TBF1 (TFB alpha) are discussed in light of these new results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call