Abstract

ABSTRACTINI1/hSNF5/SMARCB1/BAF47 is an HIV-specific integrase (IN)-binding protein that influences HIV-1 transcription and particle production. INI1 binds to SAP18 (Sin3a-associated protein, 18 kDa), and both INI1 and SAP18 are incorporated into HIV-1 virions. To determine the significance of INI1 and the INI1-SAP18 interaction during HIV-1 replication, we isolated a panel of SAP18-interaction-defective (SID)-INI1 mutants using a yeast reverse two-hybrid screen. The SID-INI1 mutants, which retained the ability to bind to IN, cMYC, and INI1 but were impaired for binding to SAP18, were tested for their effects on HIV-1 particle production. SID-INI1 dramatically reduced the intracellular Gag/Gag-Pol protein levels and, in addition, decreased viral particle production. The SID-INI1-mediated effects were less dramatic in trans complementation assays using IN deletion mutant viruses with Vpr-reverse transcriptase (RT)-IN. SID-INI1 did not inhibit long-terminal-repeat (LTR)-mediated transcription, but it marginally decreased the steady-state gag RNA levels, suggesting a posttranscriptional effect. Pulse-chase analysis indicated that in SID-INI1-expressing cells, the pr55Gag levels decreased rapidly. RNA interference analysis indicated that small hairpin RNA (shRNA)-mediated knockdown of INI1 reduced the intracellular Gag/Gag-Pol levels and further inhibited HIV-1 particle production. These results suggest that SID-INI1 mutants inhibit multiple stages of posttranscriptional events of HIV-1 replication, including intracellular Gag/Gag-Pol RNA and protein levels, which in turn inhibits assembly and particle production. Interfering INI1 leads to a decrease in particle production and Gag/Gag-Pol protein levels. Understanding the role of INI1 and SAP18 in HIV-1 replication is likely to provide novel insight into the stability of Gag/Gag-Pol, which may lead to the development of novel therapeutic strategies to inhibit HIV-1 late events. IMPORTANCE Significant gaps exist in our current understanding of the mechanisms and host factors that influence HIV-1 posttranscriptional events, including gag RNA levels, Gag/Gag-Pol protein levels, assembly, and particle production. Our previous studies suggested that the IN-binding host factor INI1 plays a role in HIV-1 assembly. An ectopically expressed minimal IN-binding domain of INI1, S6, potently and selectively inhibited HIV-1 Gag/Gag-Pol trafficking and particle production. However, whether or not endogenous INI1 and its interacting partners, such as SAP18, are required for late events was unknown. Here, we report that endogenous INI1 and its interaction with SAP18 are necessary to maintain intracellular levels of Gag/Gag-Pol and for particle production. Interfering INI1 or the INI1-SAP18 interaction leads to the impairment of these processes, suggesting a novel strategy for inhibiting posttranscriptional events of HIV-1 replication.

Highlights

  • interacting protein 1 (INI1)/hSNF5/SMARCB1/BAF47 is an HIV-specific integrase (IN)-binding protein that influences human immunodeficiency virus type 1 (HIV-1) transcription and particle production

  • The library was screened against SAP18 expressed as a fusion protein fused to the GAL4activation domain, and interaction was detected by the activation of the LacZ reporter gene

  • The goal of our studies was to delineate the role of INI1 in HIV-1 replication by understanding the effects of various INI1 mutants and small hairpin RNA (shRNA) knockdown of INI1

Read more

Summary

Introduction

INI1/hSNF5/SMARCB1/BAF47 is an HIV-specific integrase (IN)-binding protein that influences HIV-1 transcription and particle production. RNA interference analysis indicated that small hairpin RNA (shRNA)-mediated knockdown of INI1 reduced the intracellular Gag/Gag-Pol levels and further inhibited HIV-1 particle production These results suggest that SID-INI1 mutants inhibit multiple stages of posttranscriptional events of HIV-1 replication, including intracellular Gag/Gag-Pol RNA and protein levels, which in turn inhibits assembly and particle production. Mutations within the IN region that disrupt interactions of Gag/Gag-Pol with cellular proteins would lead to assembly defects In support of this hypothesis, we have previously demonstrated that trans dominant-negative mutants of the HIV-1 IN-interacting protein 1 (INI1)/hSNF5 that bind to the IN portion of Gag-Pol inhibit assembly in an IN-dependent manner [16, 17]. It was subsequently demonstrated that ALLINIs increase the multimerization of IN [18, 20] These observations corroborate the hypothesis that Pol-binding host proteins or events that interfere with Pol function may influence the assembly process

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call