Abstract

Stimulation of mitogen-activated protein kinases (MAPKs) or extracellular signal regulated protein kinases (ERKs) after exposure of mammalian cells to ultraviolet (UV) and X-irradiation occurs through activation of receptor tyrosine kinases via Ras/Raf/Mek/ERKs cascade. This activation of MAPKs is proposed to play a role in the replacement of damaged proteins during these stresses. Heat shock also activates MAPKs; however, the signaling cascade and the biochemical and physiological links between activation by heat and downstream effects are unknown. In this report we demonstrate that, unlike irradiation, heat induces MAPKs through ceramide metabolism to sphingosine with stimulation of Raf-1 protein kinase. The activation of MAPKs by heat does not occur in all cell types, because the step(s) downstream of ceramide to activation of Raf-1 protein kinase is missing in myeloid leukemic cells such as HL-60, U937, and K562, while it is present in NIH3T3 fibroblasts. Heat-induced MAPK activation may enhance the ability of cells to survive a severe heat shock. Blocking 60–70% of the activity of MAPK (ERK1) by stable overexpression of the dominant negative allele ERK1-KR renders NIH3T3 and K562 cells up to 100-fold more sensitive to cytotoxic effects of heat. Conversely, NIH3T3 and K562 cells stably overexpressing the wild-type ERK1 develop resistance to killing by heat. These results suggest that increased thermal sensitivity of leukemic cells to thermal stress or other cancer therapy regimens could be attributable to lack of pertinent activation of the MAPK pathway by such stresses. J. Cell. Biochem. 74:648–662, 1999. © 1999 Wiley-Liss, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.