Abstract

Proteolytic inactivation of key regulatory proteins is essential in eukaryotic cell-cycle control. We have identified a protease in the eubacterium Caulobacter crescentus that is indispensable for viability and cell-cycle progression, indicating that proteolysis is also involved in controlling the bacterial cell cycle. Mutants of Caulobacter that lack the ATP-dependent serine protease ClpXP are arrested in the cell cycle before the initiation of chromosome replication and are blocked in the cell division process. ClpXP is composed of two types of polypeptides, the ClpX ATPase and the ClpP peptidase. Site-directed mutagenesis of the catalytically active serine residue of ClpP confirmed that the proteolytic activity of ClpXP is essential. Analysis of mutants lacking ClpX or ClpP revealed that both proteins are required in vivo for the cell-cycle-dependent degradation of the regulatory protein CtrA. CtrA is a member of the response regulator family of two-component signal transduction systems and controls multiple cell-cycle processes in Caulobacter. In particular, CtrA negatively controls DNA replication and our findings suggest that specific degradation of the CtrA protein by the ClpXP protease contributes to G1-to-S transition in this organism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call