Abstract
N-terminal acetylation is a common eukaryotic protein modification that involves the addition of an acetyl group to the N-terminus of a polypeptide. This modification is largely performed by cytosolic N-terminal acetyltransferases (NATs). Most associate with the ribosome, acetylating nascent polypeptides co-translationally. In the malaria parasite Plasmodium falciparum, exported effectors are thought to be translated into the endoplasmic reticulum (ER), processed by the aspartic protease plasmepsin V and then N-acetylated, despite having no clear access to cytosolic NATs. Here, we used inducible gene deletion and post-transcriptional knockdown to investigate the primary ER-resident NAT candidate, Pf3D7_1437000. We found that it localizes to the ER and is required for parasite growth. However, depletion of Pf3D7_1437000 had no effect on protein export or acetylation of the exported proteins HRP2 and HRP3. Despite this, Pf3D7_1437000 depletion impedes parasite development within the host red blood cell and prevents parasites from completing genome replication. Thus, this work provides further proof of N-terminal acetylation of secretory system proteins, a process unique to apicomplexan parasites, but strongly discounts a promising candidate for this post-translational modification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.