Abstract

Assembly of the bacterial flagellar filament requires a type III export pathway for ordered delivery of structural subunits from the cytosol to the cell surface. This is facilitated by transient interaction with chaperones that protect subunits and pilot them to dock at the membrane export ATPase complex. We reveal that the essential export protein FliJ has a novel chaperone escort function in the pathway, specifically recruiting unladen chaperones for the minor filament-class subunits of the filament cap and hook-filament junction substructures. FliJ did not recognize unchaperoned subunits or chaperone-subunit complexes, and it associated with the membrane ATPase complex, suggesting a function postdocking. Empty chaperones that were recruited by FliJ in vitro were efficiently captured from FliJ-chaperone complexes by cognate subunits. FliJ and subunit bound to the same region on the target chaperone, but the cognate subunit had a approximately 700-fold greater affinity for chaperone than did FliJ. The data show that FliJ recruits chaperones and transfers them to subunits, and indicate that this is driven by competition for a common binding site. This escort mechanism provides a means by which free export chaperones can be cycled after subunit release, establishing a new facet of the secretion process. As FliJ does not escort the chaperone for the major filament subunit, cycling may offer a mechanism for export selectivity and thus promote assembly of the junction and cap substructures required for initiation of flagellin polymerization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call