Abstract

Chronic predator stress (CPS) is an important and ecologically relevant tool for inducing anhedonia in animals, but the neural circuits underlying the associated neurobiological changes remain to be identified. Using cell-type-specific manipulations, we found that corticotropin-releasing hormone (CRH) neurons in the medial subthalamic nucleus (mSTN) enhance struggle behaviors in inescapable situations and lead to anhedonia, predominately through projections to the external globus pallidus (GPe). Recordings of in vivo neuronal activity revealed that CPS distorted mSTN-CRH neuronal responsivity to negative and positive stimuli, which may underlie CPS-induced behavioral despair and anhedonia. Furthermore, we discovered presynaptic inputs from the bed nucleus of the stria terminalis (BNST) to mSTN-CRH neurons projecting to the GPe that were enhanced following CPS, and these inputs may mediate such behaviors. This study identifies a neurocircuitry that co-regulates escape response and anhedonia in response to predator stress. This new understanding of the neural basis of defensive behavior in response to predator stress will likely benefit our understanding of neuropsychiatric diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.