Abstract

As we stride toward the exascale era, due to increasing complexity of supercomputers, hard and soft errors are causing more and more problems in high-performance scientific and engineering computation. In order to improve reliability (increase the mean time to failure) of computing systems, a lot of efforts have been devoted to developing techniques to forecast, prevent, and recover from errors at different levels, including architecture, application, and algorithm. In this paper, we focus on algorithmic error resilient iterative linear solvers and introduce a redundant subspace correction method. Using a general framework of redundant subspace corrections, we construct iterative methods, which have the following properties: (1) Maintain convergence when error occurs assuming it is detectable; (2) Introduce low computational overhead when no error occurs; (3) Require only small amount of local (point-to-point) communication compared to traditional methods and maintain good load balance; (4) Improve the mean time to failure. With the proposed method, we can improve reliability of many scientific and engineering applications. Preliminary numerical experiments demonstrate the efficiency and effectiveness of the new subspace correction method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.