Abstract

In this paper, we present error corrected Euler methods for solving stiff initial value problems, which not only avoid unnecessary iteration process that may be required in most implicit methods but also have such a good stability as all implicit methods possess. The proposed methods use a Chebyshev collocation technique as well as an asymptotical linear ordinary differential equation of first-order derived from the difference between the exact solution and the Euler's polygon. These methods with or without the Jacobian are analyzed in terms of convergence and stability. In particular, it is proved that the proposed methods have a convergence order up to 4 regardless of the usage of the Jacobian. Numerical tests are given to support the theoretical analysis as evidences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.