Abstract

We study the minimization of fixed-degree polynomials over the simplex. This problem is well-known to be NP-hard, as it contains the maximum stable set problem in graph theory as a special case. In this paper, we consider a rational approximation by taking the minimum over the regular grid, which consists of rational points with denominator $r$ (for given $r$). We show that the associated convergence rate is $O(1/r^2)$ for quadratic polynomials. For general polynomials, if there exists a rational global minimizer over the simplex, we show that the convergence rate is also of the order $O(1/r^2)$. Our results answer a question posed by De Klerk, Laurent, and Sun [Math. Program., 151 (2015), pp. 433--457]. and improves on previously known $O(1/r)$ bounds in the quadratic case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.