Abstract

AbstractA nonlinear Dirichlet boundary value problem is approximated by an orthogonal spline collocation scheme using piecewise Hermite bicubic functions. Existence, local uniqueness, and error analysis of the collocation solution and convergence of Newton's method are studied. The mesh independence principle for the collocation problem is proved and used to develop an efficient multilevel solution method. Simple techniques are applied for estimating certain discretization and iteration constants that are used in the formulation of a mesh refinement strategy and an efficient multilevel method. Several mesh refinement strategies for solving a test problem are compared numerically. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2006

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.