Abstract

A finite element error analysis and mesh adaptation method that can be used for improving analysis accuracy in carrying out shape design of structural components is presented in this paper. The simple error estimator developed by Zienkiewicz is adopted in this study for finite element error analysis, using only post-processing finite element data. The mesh adaptation algorithm implemented in ANSYS is investigated and the difficulties found are discussed. An improved algorithm that utilizes ANSYS POST1 capabilities is proposed and found to be more efficient than the ANSYS algorithm. An example is given to show the efficiency. An interactive mesh adaptation method that utilizes PATRAN meshing and result-displaying capabilities is proposed. This proposed method displays error distribution and stress contour of analysis results using color plots, to help the designer in identifying the critical regions for mesh refinement. Also, it provides guidance for mesh refinement by computing and displaying the desired element size information, based on error estimate and a mesh refinement criterion defined by the designer. This method is more efficient and effective than the semi-automatic algorithm implemented in ANSYS, and is suitable for structural shape design. This method can be applied not only to set-up a finite element mesh of the structure at initial design but to ensure analysis accuracy in the design process. Examples are given to demonstrate feasibility of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.