Abstract

An equivalent-asymmetric coupling coefficient (EACC) distributed feedback laser (DFB) semiconductor laser with equivalent-half apodization grating (EHAG) structure is proposed and experimentally demonstrated for the first time; the EHAG profile is equivalently realized by linearly changing the duty cycle of a sampled Bragg grating along the one half cavity, while that of the other half cavity is kept uniform. Compared with the equivalent-symmetric coupling coefficient DFB laser, the simulated intensity distribution of the EACC DFB laser shows that the light power is concentrated not only on near the phase-shift region and that the power at the front end is enlarged. Therefore, the longitudinal spatial hole burning may be reduced; the output efficiency and the single-mode stability may be improved. The experimental results show that the output power ratio between the front and rear facets is about 2.17 and the side-mode suppression ratios are over 50 dB when the injection current is in the range from 60 to 200 mA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call