Abstract

The action of translation operators on wavelet subspaces in higher dimensions is investigated. This action defines an equivalence relation on the set of single wavelets of $L^2(\mathbb R^n)$ associated with an arbitrary dilation matrix. The corresponding equivalence classes are characterized in terms of the support of the Fourier transform of the wavelets. Further, examples of wavelets in each of these classes are constructed. This construction shows the existence of wavelets for which the associated wavelet subspaces are invariant under various groups of translation operators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.