Abstract

We show that the bigroupoid of semisimple symmetric Frobenius algebras over an algebraically closed field and the bigroupoid of Calabi–Yau categories are equivalent. To this end, we construct a trace on the category of finitely-generated representations of a symmetric, semisimple Frobenius algebra, given by the composite of the Frobenius form with the Hattori-Stallings trace.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.