Abstract
Clustering has been recognized as a very important approach for data analysis that partitions the data according to some (dis)similarity criterion. In recent years, the problem of clustering mixed-type data has attracted many researchers. The k-prototypes algorithm is well known for its scalability in this respect. In this paper, the limitations of dissimilarity coefficient used in the k-prototypes algorithm are discussed with some illustrative examples. We propose a new hybrid dissimilarity coefficient for k-prototypes algorithm, which can be applied to the data with numerical, categorical and mixed attributes. Besides retaining the scalability of the k-prototypes algorithm in our method, the dissimilarity functions for either-type attributes are defined on the same scale with respect to their dimensionality, which is very beneficial to improve the efficiency of clustering result. The efficacy of our method is shown by experiments on real and synthetic data sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.