Abstract

AbstractTransactions are commonly described as being ACID: All-or-nothing, Consistent, Isolated and Durable. However, although these words convey a powerful intuition, the ACID properties have never been given a precise semantics in a way that disentangles each property from the others. Among the benefits of such a semantics would be the ability to trade-off the value of a property against the cost of its implementation. This paper gives a sound equational semantics for the transaction properties. We define three categories of actions, A-actions, I-actions and D-actions, while we view Consistency as an induction rule that enables us to derive system-wide consistency from local consistency. The three kinds of action can be nested, leading to different forms of transactions, each with a well-defined semantics. Conventional transactions are then simply obtained as ADI-actions. From the equational semantics we develop a formal proof principle for transactional programs, from which we derive the induction rule for Consistency.KeywordsCanonical FormEquational TheoryParallel CompositionConcurrency ControlAtomic ActionThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.