Abstract

An anisotropic equation of state (EOS) is proposed for the accurate extrapolation of high-pressure shock Hugoniot (anisotropic and isotropic) states to other thermodynamic (anisotropic and isotropic) states for a shocked carbon-fibre epoxy composite (CFC) of any symmetry. The proposed EOS, using a generalised decomposition of a stress tensor [A.A. Lukyanov, Int. J. Plasticity 24, 140 (2008)], represents a mathematical and physical generalisation of the Mie-Grüneisen EOS for isotropic material and reduces to this equation in the limit of isotropy. Although a linear relation between the generalised anisotropic bulk shock velocity Us A and particle velocity up was adequate in the through-thickness orientation, damage softening process produces discontinuities both in value and slope in the Us A-up relation. Therefore, the two-wave structure (non-linear anisotropic and isotropic elastic waves) that accompanies damage softening process was proposed for describing CFC behaviour under shock loading. The linear relationship Us A-up over the range of measurements corresponding to non-linear anisotropic elastic wave shows a value of c0 A (the intercept of the Us A-up curve) that is in the range between first and second generalised anisotropic bulk speed of sound [A.A. Lukyanov, Eur. Phys. J. B 64, 159 (2008)]. An analytical calculation showed that Hugoniot Stress Levels (HSLs) in different directions for a CFC composite subject to the two-wave structure (non-linear anisotropic elastic and isotropic elastic waves) agree with experimental measurements at low and at high shock intensities. The results are presented, discussed and future studies are outlined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call