Abstract

An equation of state (EoS) suitable for describing associating fluids is presented. The equation combines the simplicity of a cubic equation of state (the Soave−Redlich−Kwong), which is used for the physical part and the theoretical background of the perturbation theory employed for the chemical (or association) part. The resulting EoS (Cubic Plus Association) is not cubic with respect to volume and contains five pure compound parameters which are determined using vapor pressures and saturated liquid densities. Excellent correlations of both vapor pressures and saturated liquid volumes are obtained for primary-alcohols (from methanol up to 1-tridecanol), phenol, tert-butyl alcohol, triethylene glycol, and water. Moreover, excellent prediction of saturated liquid volumes may be obtained from parameters which have been estimated by regressing only vapor pressures. Finally, we suggest a method for reducing the number of adjustable parameters for alcohols to three while maintaining the good correlation of vapor pressures and saturated liquid volumes. We investigate the possibility of using the homomorph approach for estimating the EoS parameters and explain the problems observed. The estimated pure compound parameters have been tested in the prediction of second virial coefficients with satisfactory results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.