Abstract
Several thermodynamic properties for the process of dissolution of pure hydrocarbons into water are found to be linearly related to the number of hydrogens on the hydrocarbon molecule. From the correlations found for the Gibbs energy change, enthalpy change, and heat capacity change, along with the use of an average minimum solubility temperature, an equation of state for the hydrophobic effect is derived. The entropy change upon dissolution per hydrocarbon hydrogen atom is close to -R ln 2. A model based upon a "tetrahedrally" localized water molecule with one corner defined by a carbon-hydrogen group and the other three corners defined by water molecules is used to estimate the observed entropy and heat capacity changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.